

HVB10

High-voltage bridge

- Top measurement and accuracy
- Automatic test sequence
- Bi-polar prelocation for the elimination of external influences
- Detection and indication of wrong connections
- Only one HV connection cable
- Completely independent of the parameters of auxiliary lines
- SebaKMT´s easyGo principle

DESCRIPTION

SebaKMT's HVB10 is a highly accurate high-voltage bridge designed to locate cable and sheath faults, perform sheath testing, and pinpoint sheath faults, especially suited also for long HV cables.

With its top resolution, intermittent fault detetion function, and load adaptation for faster cable charging, the HVB10 is an indispensable tool for all utilities that want to reduce downtime and facilitate repair of power and for example pilot and communication cables.

The HVB10 has two different methods for fault location:

- the **standard mode**, which provides good results for typical sheath faults faults with fault resistances of up to some hundreds of kilo Ohms and shield cross sections in the range of 25 to 50 mm2. This measurement is typically done in app 30 seconds
- the high accuracy mode, which takes approximately 1 minute for the algorithm to complete, but will utilize the full potential of the measuring and control circuits of the instrument. Thus, it is ideally suited for prelocating difficult, high-resistive faults (e.g. in the inner insulation of PILC cables). An intermittent fault detection algorithm is applied to gain a result under even worse conditions with sparking faults.

Why HVB10?

Why do you need an HV bridge when you have ARM based prelocation?

Because it locates faults where the otherwise perfect reflection based technologies have limits, for example on long cables as subsea cables.

- TDR reflection based technologies have very large reflections on crossbonded cables, which prevent longer ranges
- Reflection measurements are based on an impedance measurement, while the HVB10 measures resistance.
 Resistance- and impedance values can be completely different while having the same cause.

The HVB10 prelocation measurement and the common prelocation by reflection measurement or ARM Arc Reflection Measurement provide complementary information, which is very helpful in case of difficult faults, where critical decisions have to be done on a reliable base.

HVB10

High-voltage bridge

Cable fault location

The HVB10 accurately prelocates cable interruptions and short-circuit faults, and detects high-resistance conductor faults that cannot be prelocated with impulse reflection based methods

The HV bridge is equipped with a strong discharge unit which allows the safe discharge of cables with a capacity of up to 25 µF. Prior to each test, a capacity measurement ensures that the expected discharge energy does not exceed these parameters and damage the HVB10. This makes is very suitable for very long cables and their parameters.

Sheath fault prelocation

The prelocation of sheath faults takes place automatically. The only parameters that need to be entered are the peak test voltage and the cable length. If the cable length is not available, the fault distance is displayed as a percentage of the length.

The HVB10 evaluates all measurements automatically, providing the user with a report of the test results and a statement about the sheath condition.

Sheath fault pinpointing

The HVB10 provides two possibilities for sheath fault pinpointing:

- TDR reflection based technologies have very large reflections on crossbonded cables, which prevent longer ranges
- by means of 3 or 4.8 Hz signal and A-frame

Optionally, the HVB10 can be equipped with an audio frequency module. In addition to the step voltage, this module generates an audio frequency signal of 8.44 kHz for simultaneous tracing and fault pinpointing.

The power can be supplied either from the mains, via the wide range AC input from 88 V to 264 V, or by using the integrated rechargeable battery for minimum of 2 hours operation. This battery can also be charged by a 12/24 DC input.

TECHNICAL DATA

 Output voltage
 0 ... 10 kV DC, bi-polar

 Output current
 200 mA @ 0.5 ... 1.5 kV,

60 mA @ 5 kV, 30 mA @ 10 kV

Max. test object capacity $25 \,\mu\text{F}$ Test voltage $0 \, \dots \, -10 \,\text{kV}$

Prelocation

Method Voltage drop method (automatic.)

Accuracy $\pm 0.1 \%$

 Pinpointing
 0 ... - 10 kV DC, pulsed

 Voltage
 0.5:1 / 1:2 / 1.5:0.5 / 1.5:3.5

 Pulse rate
 3 and 4.8 Hz for A-frame

 Option AF
 8.44 kHz, Uo = 100 V_{rms}, P = 7

 W_{peak} (500 Ω)

Supply voltage 88 V ... 264 V, 50/60 Hz

DC Supply (charge only) 12/24 V DC

Battery Int. NiMH battery (340 Wh)

Power consumption approx. 2 hours max. 500 VA

Display 320 x 240 pixel LCD, LED rear light

Interfaces USB poi

Storage 2 GB Flash memory for System and data

Data logging by USB stick

Operating temperature -25°C ... +55°C / max. 93 %

rel. humidity

Storage temperature -40° C ... $+70^{\circ}$ C Dimensions (W x H x D) $500 \times 457 \times 305$ mm

Weight 25 kg

Protection class acc. | (Pro

IEC 61140

Protection class acc.

IEC 60529

I (Protective earthing)

IP 53 (with closed lid)

Options

Connection set for HV armatures

Max. fault resistance @ 10 kV with a 1 km cable with defined cross section. Fault position @ 50% of cable length	Ø mm²	25	150	240	300	630	1200
	CU conductor	670 ΜΩ	110 ΜΩ	69 ΜΩ	55 ΜΩ	26 ΜΩ	13 ΜΩ
	AL conductor	1 GΩ	176 ΜΩ	110 ΜΩ	88 ΜΩ	42 MΩ	22 ΜΩ
Max. fault resistance @ 10 kV with a 1 km cable with defined cross section. Fault position between 10% and 90% of cable length	Ø mm²	25	150	240	300	630	1200
	CU conductor	132 ΜΩ	22 ΜΩ	13 ΜΩ	11 ΜΩ	5,2 ΜΩ	2,7 ΜΩ
	AL conductor	209 ΜΩ	34 ΜΩ	21 ΜΩ	17 ΜΩ	8,3 ΜΩ	4,3 ΜΩ

ORDERING INFORMATION	
Item	Cat. No.
HV Measuring Bridge System HVB10-1	1012574
HV Measuring Bridge System with option Audio Frequency HVB 10-1-AF	1012575
Consisting of:	
HVB 10-1	1004820
HVB 10-1-AF	1004821
USB-Drive with Software EasyProt	890017185
Set of cables for HVB 10 in accessory bag	1004032
Consisting of:	
HSK 40-6 HV Test lead, HVB 10-1 6m 1 ea	2008422-001
EK 11 Earth lead 5 m (green/yellow) 1 ea	820024352
AK 49-B Clip (green/yellow) 1 ea	810003846
MK 053-B Test lead (Blue) 2 ea	810003176
AK 43-B Clip (blau) 4 ea	810003848
LK 13 Vehicle charging adapter 3,5 m 1 ea	810000006
NKG 1Power cord 2,5 m, 3x1 mm grey 1 ea	810000024
Power cord 2,5 m, 3x1 mm grey (UK-Version) 1 ea	118307335
Power cord (US-Version) JEC 2 m 1 ea	502025220
HVB10, Manual de	83230
HVB10, Manual en	83041
Options:	03041
Connection set for HV Armatures	1003344
Consisting of:	
HKZ HVB-1	
Connection Clamp (Black) 4 ea	1003332
HKZ HVB-2 Connection Clamp (Red) 2 ea	1003333
Cable binder, velcro, (black) 8 ea	820020537
Manual for connection Set HVB10	2003767

SALES OFFICES

Megger GmbH

Obere Zeil 2
D-61440 Oberursel
Germany
T 0049 6171 92987-0
E info@megger.de

Seba Dynatronic Mess- und Ortungstechnik GmbH Dr.-Herbert-lann-Str. 6 96148 Baunach Germany T 0049 9544 68-0 E team.international@megger.de HVB10_DS_EN_V02

www.megger.com ISO 9001

