

Specifications

WT5000
 Precision Power Analyzers

WT5000 Precision Power Analyzers

Signal Input Section		
Power Measurement		
Element	Plug-in input unit	
Number of elements 7		
Installable input elements		
	Elements exclusive to the WT5000	
Input element mixing	Allowed	
Empty element	Allowed However, element 1 to the element before the first empty element can be used. Elements installed after the empty element number cannot be used.	
Hot swapping	Not allowed	
Motor Evaluation Function (Option)		
Input type	Unbalanced, functional isolation	
Input resistance	$1 \mathrm{M} \Omega \pm 1 \%$, Approx. 47 pF	
Continuous maximum allowable input$\pm 22 \mathrm{~V}$		
Maximum voltage to earth ± 42 Vpeak		
Input channels	MTR1: ChA (Torque1/Aux1): Analog/Pulse input ChB (Speed1/Aux3): Pulse input ChC (B/Torque2/Aux2): Analog/Pulse input ChD (Z/Speed2/Aux4): Pulse input	
	MTR2: ChE (Torque3/Aux5): Analog/Pulse input ChF (Speed3/Aux7): Pulse input ChG (B/Torque4/Aux6): Analog/Pulse input ChH (Z/Speed4/Aux8): Pulse input	
Input type	$\begin{gathered}\text { Analog input } \\ \text { Range }\end{gathered} \quad 1 / 2 / 5 / 10 / 20 \mathrm{~V}$	
	Range setting	Fixed/Auto Auto range Range increase: When the measured value exceeds 110% of the range When the peak value exceeds approximately 150% Range decrease: When the measured value is 30% of the range o less and the peak value is less than 125% of the next lower range
	Input range	$\pm 110 \%$
	Bandwidth	$20 \mathrm{kHz}(-3 \mathrm{~dB})$
	Sample rate	Approx. $200 \mathrm{kS} / \mathrm{s}$
	Resolution	16 bit
	Accuracy*	For the 6 months accuracy $\pm(0.03 \%$ of reading $+0.03 \%$ of range) For the 1 year accuracy, multiply the reading of the accuracy at 6 months by 1.5
	Temperature coefficient $\pm 0.03 \%$ of range $/{ }^{\circ} \mathrm{C}$	
	Line filter	Low-pass filter Filter response: Butterworth fc: $100 \mathrm{~Hz}, 500 \mathrm{~Hz}, 1 \mathrm{kHz}$
	Pulse input	
	Input range	± 12 Vpeak
	Detection level	H level: approx. 2 V or higher L level: approx. 0.8 V or less
	Pulse width	250 ns or more However, 50% duty ratio for detecting forward rotation
	Frequency mea	rement range 2 Hz to 2 MHz
	Rotation directio	detection 2 Hz to 1 MHz When the pulse noise filter is in use: 10 kHz : 2 Hz to 3 kHz 100 kHz : 2 Hz to 30 kHz $1 \mathrm{MHz}: 2 \mathrm{~Hz}$ to 300 kHz
	Accuracy	$\pm(0.03+f / 10000) \% \text { of reading } \pm 1 \mathrm{mHz}$ The unit of f is kHz . However, the waveform display data accuracy is $\pm(0.03+f / 500) \%$ of reading $\pm 1 \mathrm{mHz}$ The unit of f is kHz .
	Pulse noise filter	Low-pass filter fc: $10 \mathrm{kHz}, 100 \mathrm{kHz}, 1 \mathrm{MHz}$
	Z pulse delay co	rection Corrects the time setting delay

Peak over-range detection
150% of the range or more

Analog input accuracy guarantee conditions:
Humidity: 30% RH to 75% RH
Voltage to ground: 0 V
In a wired condition after warm-up time has passed and after zero-level compensation.
For $5^{\circ} \mathrm{C}$ to $18^{\circ} \mathrm{C}$ and $28^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$, add the temperature coefficient.

Measurement Output Section

D/A Output (/DA20 option)
Output connector type Micro ribbon connector (Amphenol 57LE connector), 36-pin
Output source The set measurement function Normal measurement

Voltage, current, power: U/l rms, mn, dc, rmn, ac P/S/Q/N/Ф/
Pc and Σ
Peak value : U/I/P, $\pm \mathrm{pk}$
Frequency: fU/fl/f2U/f2//fPLLx
Integration: ITime/WPx/qx/WS/WQ
Efficiency, user-defined function, user-defined event
Harmonic measurement
Voltage, current, power harmonics: $\mathrm{U} / / / \mathrm{P} / \mathrm{S} / \mathrm{Q} / \mathrm{N}$ and Σ UI, inter-harmonic, inter-element phase difference: $\Phi \times x$
Load circuit constant: Z/Rs/Xs/Rp/Xp
Relative harmonic content, strain: U//IP
Telephone harmonic factor: U/I
Telephone influence factor: U/I K-factor
Delta computation
$\mathrm{U} / / \mathrm{P}$ and EU, P
Motor evaluation function
Speed, Torque, SyncSp, Slip, Pm, EaMxU, EaMxl, Auxx
$* 0 \mathrm{~V}$ to +5 V when the phase angle display setting is 360
The \% output measurement function is +5 V at 100%.
*Rated integrated value is range rating \times set integration time
Approx. 7.5 V for setting function errors.
Howevis, UM pk is aprox. 7.5 V .

${ }^{*} \times$ consists of characters and numbers.	
$\mathrm{D} /$ A resolution	16 bit
Output type	Voltage output, functional isolation
Output voltage	Rating: $\pm 5 \mathrm{~V}$, maximum output voltage: approx. $\pm 7.5 \mathrm{~V}$
Range mode	Fixed: $\pm 5 \mathrm{VFS}$ Manual: Maximum range value: 9.999 T, minimum range value: -9.999 T Number of channels
Accuracy	\pm (output source measurement accuracy $+0.1 \%$ of FS), 1 year accuracy
Output resistance	Approx. 100Ω
Minimum load	$100 \mathrm{k} \Omega$

Temperature coefficient $\pm 0.05 \%$ of $\mathrm{FS} /{ }^{\circ} \mathrm{C}$
Maximum voltage to earth
± 42 Vpeak or less

Output update interval	Same as the data update interval Synchronizes to the trigger when the measurement mode is trigger
Remote control	See Auxiliary I/O
Display	
Display	10-1-inch

Display
10.1-inch color TFT LCD with a capacitive touch screen

Resolution of the entire screen*
1280×800 dots $(\mathrm{H} \times \mathrm{V})$

Language	Japanese/English
Display update rate	Same as the data update interval

However,

1) When the data update interval is $50 \mathrm{~ms}, 100 \mathrm{~ms}$, or 200 ms and only numeric display is in use, the display is updated every 200 ms to 500 ms (depends on the number of displayed parameters).
2) When the data update interval is $50 \mathrm{~ms}, 100 \mathrm{~ms}, 200 \mathrm{~ms}$, or 500 ms and parameters other than those of numeric display are shown, the display is updated every 1 s .
3) When the measurement mode is normal measurement trigger mode,
measurement is executed over the time interval specified by the data update interval from when a trigger is detected. The amount of time shown below is required for the instrument to compute the measured data,
process it for displaying, and so on, and become ready for the next trigger.

- When the data update interval is 50 ms to 500 ms : Approx. 1 s
- When the data update interval is 1 s to 20 s : Data update interval +500 ms

In this case, storage, communication output, and D/A output operate
in sync with the triggers.
If the measurement mode display is set to normal measurement mode, storage, communication output, and D/A output operate in sync with the data update interval.

LCD adjustment Turning off the LCD
Manual (default) Off: Panel key operation

> On: Key operation and panel touch

Brightness adjustment	10 levels
Grid intensity	8 levels
Color	Waveform, trend, and vector display colors are fixed

Trigger update	Display screen: Single, split screen and the measurement display of the trend Numeric, waveform (triggered), trend, bar, vector
	Measurement function: Normal, harmonic However, the integration feature is not available.
Features	
General Features	
Element range setting	Can be set for each input element and wiring unit
Fixed/auto range settin	g Fixed range setting Manually set the range of your choice (except only the ranges selected by the valid measurement range selection feature). Range Σ link: ON: Set the range for each wiring unit. OFF: Set the range for each element.
	Auto range setting Auto range setting feature Range increase When Urms or Irms exceeds 110\% of the measurement range (220\% for crest factor CF6A). When the peak value of the input signal exceeds approximately 310% (approximately 620% for crest factor CF6 or CF6A) of the range.
	Range decrease When the measured Urms or Irms value is less than or equal to 30% of the range, Upk and Ipk are less than equal to 300% of the lower range (range to decrease to) (less than equal to 600% for crest factor CF6 or CF6A), and Urms and Irms are less than 105\% Changes the range directly to the appropriate range when the range-decrease conditions are met.
	A feature for changing to the specified range when a peak over-range occurs *The null value is not used for peak over-range detection.
	Valid measurement range selection feature A feature for selecting the valid measurement range according to the usage conditions Only the selected ranges are used.
Element scaling	A feature that allows direct reading by setting the current sensor conversion ratio, VT ratio, CT ratio, and power coefficient SF - Auto CT ratio configuration is possible by selecting the CT series model name. Source measurement function Set voltage U, current I, power (P, S, Q), maximum voltage (U+pk)/ minimum voltage ($\mathrm{U}-\mathrm{pk}$), maximum current $(1+\mathrm{pk}) /$ minimum current $(\mathrm{l}-\mathrm{pk})$, maximum power $(\mathrm{P}+\mathrm{pk}) /$ minimum power ($\mathrm{P}-\mathrm{pk}$), and VT ratio in the following range. Selectable range: 0.0001 to 99999.9999
Averaging	```Type: Exponential average, moving average Source: Normal measurement function Urms, Umn, Udc, Urmn, Uac, Irms, Imn, Idc, Irmn, lac, P, S, Q, fU, fl, f2U, f2l, \|U1 to }\trianglePE\mathrm{ , Torque, Speed, Pm, Aux(/MTR1/MTR2 option)```
	Harmonic measurement function $\mathrm{U}(\mathrm{k}), \mathrm{I}(\mathrm{k}), \mathrm{P}(\mathrm{k}), \mathrm{S}(\mathrm{k}), \mathrm{Q}(\mathrm{k})$ Exponential averaging, attenuation constant: 2 to 64 Moving average, average count: 8 to 64
	Data reset: Data being computed is reset if a setting of any of the functions below is changed. Averaging type, averaging attenuation constant Range, crest factor, range Σ link, wiring Scale value Line filter, frequency filter Data update interval, averaging method, sync source Zero-level compensation Maximum harmonic order, minimum harmonic order, harmonic window span Waveform observation time
Hold	Measurement hold: Suspends the measurement and display operations and holds the data display of each measurement function. However, measurement is not suspended during integration. Only the display is held. D/A output, communication output, and the like are also held. However, if only the display is held and measurement is continuing during integration, the storage function saves the measured values that are being updated.
Single measurement	A single measurement is performed at the specified data update rate while a measurement is being held and the hold state is maintained. If you press SINGLE when the measurement is not being held, measurement is performed again from that point.
Zero-level compensation (Cal)	Measurement element's circuit offset correction feature Manual: Executed under the current settings through a key operation or communication. Auto: Automatically execute when the measurement range is changed or the filter is changed.

Zero-level compensation (Null)	Offset correction feature for all measurement circuits including measurement elements Executed under the current settings through a key operation or communication.
	Null status: Can be set separately for each function ON: Updates the null value every time a null is executed. HOLD: Holds the null value set once. OFF: Disables null correction. [Upper null limit] Analog input (Pwr/Motor/Aux): 0\% of range rating Pulse input (Motor/Aux): Speed: 10% of [60/PulseN $\times 10000 \mathrm{~Hz}][\mathrm{rpm}]$
	Torque: 10% of the absolute value of Rated Upper [Nm] Rated Upper: The larger of " $\mathrm{Nm}-\mathrm{Hz}$ coordinates $\times 2$ points" for determining the linear scaling value
	Aux: 10% of the upper pulse input specification limit $2 \mathrm{MHz}[\mathrm{Hz}]$
Storage	Stores numeric data to internal memory and a USB memory device Save Interval Data update interval, specified time, or specified interval
	Synchronization Manual, real time, integration, event
	Storage count 1 to 9999999
	Time interval $\quad 50 \mathrm{~ms}$ to 99 h 59 m 59 s
	File Format Binary
	Maximum data file size 1 GB
	Saved data conversion Converts to CSV
Data save	Save numeric data, waveform data, and screen images to the internal memory, a USB memory device, or a network drive
Saving and loading setup parameters	Save setup parameters to the internal memory, a USB memory device, or a network drive Load saved setup parameters.
File operations	Create folder, copy, move, rename, protect, delete
Master and slave synchronized measurement	A feature for synchronizing the measurement start on slave devices to the master device Connector type BNC: Same for master and slaves
	I/O level TL: Same for master and slaves
	Output logic Negative logic, falling edge: Applies to the master
	Output hold time Low level, 500 ns or more: Applies to the master
	Input logic Negative logic, falling edge: Applies to slaves
	Minimum pulse width Low level, 500 ns or more: Applies to slaves
	Measurement start output signal delay Applies to the master: Within $1 \mu \mathrm{~s}$
	Measurement start delay Applies to slaves: Within $2 \mu \mathrm{~s}$
	Maximum number of connected units 4 unit
	Data update interval 50 ms to 20 s
	Measuring Mode Normal measurement
User-Defined Function	A feature for performing computation by combining measurement function symbols Number of computations 20
	Maximum number of operands 16
	Number of characters in an expression Up to 60 characters
	Number of unit characters Up to 8 characters
	Operators ,,$+- \times, \div$, ABS, SQR, SQRT, LOG, LOG10, EXP, NEG, SIN, COS, TAN, ASIN, ACOS, ATAN
	Parameters Element, Σ unit, harmonic order
MAX hold	Can be defined using the user-defined function
Efficiency equation	Efficiency computation of up to 4 systems is possible.
User-defined events	Uses measurement functions as trigger conditions Event Measurement condition
	Judgment condition <, <=, =, >, >=, !=
	Number of events 8
Peak over-range detection	Elements, Motor (/MTR1/MTR2) Displays over-range information on the screen when the allowable range of each element and motor (/MTR1/MTR2) is exceeded.
System configuration	Date and time, message language, menu language
Time setting	Sets the time at startup using the Simple Network Time Protocol (SNMP)
Initialization feature	Returns the settings to their factory default values Settings that are not initialized: date and time, communication settings, menu language, message language, environmental settings*
	*Environmental settings (Preference): Indication that appears when the frequency or motor pulse frequency is less than the lower limit, decimal point and separator used when saving to ASCII format (.csv)
	*Starting the instrument with the ESC key held down returns all settings except the date and time to their factory default values.
Help	Displays explanations of features
Self-test	Memory, key test (keyboard)

	When the line filter advanced setting is off According to the element's line filter	
	When the line filte	vanced setting is on Filter exclusive to harmonic measurement (independent of the element's line filter)
	Filter response Bessel	Filter form: IIR Filter type: LPF Filter order: 4 LPF Cutoff frequency: 100 Hz to 100 kHz Resolution: 100 Hz Cutoff characteristic: $-24 \mathrm{~dB} /$ Oct (typical)
	Butterworth	Filter form: IIR Filter type: LPF Filter order: 4 LPF Cutoff frequency: 100 Hz to 100 kHz Resolution: 100 Hz Cutoff characteristic: $-24 \mathrm{~dB} /$ Oct (typical)
Frequency filter	Elements 1 to 7, Can be set separa Computation rate	uency measurement and sync source or each element Maximum computation rate: $10 \mathrm{MS} / \mathrm{s}$ The computation rate is selected automatically based on the set frequency $100,1 \mathrm{k}, 10 \mathrm{k}$, $100 \mathrm{k}, 1 \mathrm{M}, 5 \mathrm{M}$, or 10 MHz .
	Filter response Butterworth	Filter form: IIR Filter type: LPF, HPF, (BPF)* Filter order: 4 LPF Cutoff frequency: 100 Hz to 100 kHz Resolution: 100 Hz HPF When the line filter advanced setting is off Fixed to 0.1 Hz When the line filter advanced setting is on Cutoff frequency: $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}$, $100 \mathrm{~Hz} \text { to } 100 \mathrm{kHz}$ Resolution: 100 Hz (fc $\geq 100 \mathrm{~Hz}$) Cutoff characteristic: $-24 \mathrm{~dB} /$ Oct (typical)
	*BPF is possible by setting HPF and LPF simultaneously. LPF, BPF, and HPF can be set for the first frequency and for the sync source. Default setting: HPF, 0.1 Hz HPF only for the second frequency.	
Integration Function		
Calculation period	Manual, integration time, real-time control Integration time repetition, real-time control repetition Integration timer range: 0 h 00 m 00 s to 10000 h 00 m 00 s Count over: When the maximum integration time (10000 hours) is reached or when an integrated value reaches the maximum or minimum displayable integrated value ($\pm 999999 \mathrm{MWh}, \pm 999999$ MAh, ± 999999 MVAh, ± 999999 Mvarh), the integration time and value at that point are held and integration is stopped.	
Power failure recovery Resumes integration if a power failure occurs during integration.		
Independent integration Integration can be executed separately for each element.		
External control	With the /DA20 option, start, stop, and reset are possible through external signals.	
Auto calibration	Auto offset calibration feature Zero-level compensation is performed at the current range of all elements approximately every hour.	
Frequency Measuremen Measured item	Measures the frequency of the voltage or current applied to all input elements.	
Measurement system	A/D data level trigger gate generation Reciprocal method	
Display resolution	99999	
nimum frequency resolution		
Measurement range	$0.1 \mathrm{~Hz} \leq \mathrm{f} \leq 2 \mathrm{MHz}$ For the relationship between the data update interval and the measurement range. See specifications of each element. *Measurement frequency range is limited by the element. *The display limit is 1.1 times the upper limit of the measurement range (2.2 MHz). Display: Error, 32-bit floatingpoint value: $0 \times$ FFFFFFFF	
Accuracy	Depends on the element	
Condition	When the input signal level is 30% or more (60% or more when the crest factor is set to CF6 or CF6A) of the measurement range. However, 1) Input condition for 50% of the range or more - Twice the lower frequency limit above or less - Minimum current range 500 mA range (760901) (CF3) 5 mA range (760902) (CF3) - Minimum external sensor range 50 mV range (760901, 760902) (CF3) 2) Frequency filter setup conditions 0.1 Hz to $100 \mathrm{~Hz}:$ fc $=100 \mathrm{~Hz}$ 100 Hz to 1 kHz : fc $=1 \mathrm{kHz}$ 1 kHz to 100 kHz : fc $=100 \mathrm{kHz}$	

Frequency detection signal level setting Selectable range HPF: ON: Auto HPF: OFF: Rectifier OFF: $\pm 100 \%$ of range Rectifier ON: 0% to $+100 \%$ of range					
Harmonic Measurement Feature					
Measured item	All installed elements				
Method	PLL synchronization method				
Frequency range	Fundamental frequency: 0.1 Hz to 300 kHz Analysis frequency: 0.1 Hz to 1.5 MHz				
PLL source	Select the input element's voltage or current or external clock. Input level: 50% or more of the rated measurement range when the crest factor is CF3. 100% or more of the rated measurement range when the crest factor is CF6 or CF6A. The conditions in which frequency filters are turned on $\begin{aligned} & 0.1 \mathrm{~Hz} \leq \mathrm{f}<100 \mathrm{~Hz}: 100 \mathrm{~Hz} \\ & 100 \mathrm{~Hz} \leq \mathrm{f}<1 \mathrm{kHz}: 1 \mathrm{kHz} \\ & 1 \mathrm{kHz} \leq \mathrm{f}<10 \mathrm{kHz}: 10 \mathrm{kHz} \\ & 10 \mathrm{kHz} \leq \mathrm{f}<100 \mathrm{kHz}: 100 \mathrm{kHz} \end{aligned}$				
Number of FFT points	Select 1024 or 8192.				
Window function	Rectangular				
Anti-Aliasing Filter	Set using a line filter or harmonic filter				
When the number of FFT points is 1024					
	Fundamental frequency			Upper limit of harmonic analysis	
		$\begin{gathered} \text { Sample } \\ \text { rate } \end{gathered}$	Window width	U, I, P, Ф, ФU, ©I	Other measured values
	0.1 Hz to 3 kHz	fx 1024	1 wave	100th	100th
	3 kHz to 7.5 kHz	fx512	2 waves	100th	100th
	7.5 kHz to 15 kHz	fx 256	4 waves	50th	50th
	15 kHz to 30 kHz	fx 128	8 waves	20th	20th
	30 kHz to 75 kHz	fx64	16 waves	10th	10th
	75 kHz to 150 kHz	f $\times 32$	32 waves	5th	5th
When the number of FFT points is 8192 (at $10 \mathrm{MS} / \mathrm{s}$)					
	Fundamental frequency	Sample rate	Window width	Upper limit of harmonic analysis	
				$\begin{gathered} U, I, P, \Phi \\ \Phi \cup, \Phi 1 \end{gathered}$	Other measured values
	0.5 Hz to 3 kHz	fx 1024	8 waves	500th harmonic	100th
	3 kHz to 7.5 kHz	fx 1024	8 waves	200th	100th
	7.5 kHz to 15 kHz	f $\times 512$	16 waves	100th	100th
	15 kHz to 30 kHz	f $\times 256$	32 waves	50th	50th
	30 kHz to 75 kHz	$\mathrm{f} \times 128$	64 waves	20th	20th
	75 kHz to 150 kHz	fx64	128 waves	10th	10th
	150 kHz to 300 kHz	f×32	256 waves	5th	5th
	The maximum order is 100 when the update interval is 50 ms or less.				
When the number of FFT points is 8192 (at $5 \mathrm{MS} / \mathrm{s}$)					
	Fundamental frequency	Sample rate	Window width	Upper limit of harmonic analysis	
				$\begin{gathered} U, I, P, \Phi \\ \Phi \cup, \Phi 1 \end{gathered}$	$\begin{aligned} & \text { Other measured } \\ & \text { values } \end{aligned}$
	0.5 Hz to 1.2 kHz	fx 1024	8 waves	500th harmonic	100th
	1.2 kHz to 3 kHz	fx 1024	8 waves	200th	100th
	3 kHz to 7.5 kHz	f $\times 512$	16 waves	100th	100th
	7.5 kHz to 15 kHz	fx 256	32 waves	50th	50th
	15 kHz to 30 kHz	fx 128	64 waves	20th	20th
	30 kHz to 75 kHz	fx64	128 waves	10th	10th
	75 kHz to 150 kHz	f×32	256 waves	5th	5th
	The maximum order is 100 when the update interval is 50 ms or less.				
Measurement Function Computation					
Normal Measurement Voltage (N) Urms: true rms value, Umn: rectified mean value calibrated to the rms value, Urmn: current rectified mean value, Udc: simple average, Uac: AC component					
Current (A)	Irms: true rms value, Imn: rectified mean value calibrated to the rms value, Irmn: current rectified mean value, Idc: simple average, lac: AC component				
Active power (W)	P, Pfnd: fundamental component				
Apparent power (VA)	S, Sfnd: fundamental component				
Reactive power (var)	Q, Qfnd: fundamental component				
Power factor	λ, λ fnd: fundamental component				
Phase difference (${ }^{\circ}$)	Φ, Фfnd: fundamental component				
Frequency (Hz)	fU (FreqU): voltage frequency, fl (Freql): current frequency The fU and fl of elements 1 to 7 can be measured simultaneously.				
	f2U (Freq2U): voltage frequency, f21 (Freq21): the current frequency when the second frequency filter is applied				
Corrected Power(W)	```Pc Applicable standards IEC76-1 (1976), IEC76-1 (2011)```				

Voltage max．and min．（ $)$	U＋pk：maximum voltage，U－pk：minimum voltage
Current max．and min．（A）	I＋pk：maximum current，I－pk：minimum current
Power max．and min．（W）	P＋pk：maximum power，P－pk：minimum power
Crest factor（peak－to－rms ratio）	CfU：voltage crest factor，Cfl：current crest factor
Integration	ITime：integration time WP：sum of positive and negative watt hours WP＋：sum of positive P （consumed watt hours） WP－：sum of negative P （watt hours returned to the power supply） q：sum of positive and negative ampere hours $q+$ ：sum of positive I（ampere hours） q－：sum of negative I（ampere hours） WS：volt－ampere hours WQ：var hours By using the current mode setting，you can select to integrate the ampere hours using $I \mathrm{Ims}, \mathrm{Imn}$ ， Idc ，Iac，or Irmn．
Voltage measurement range	RngU
Current measurement range	Rngl
－Measurement Functions（ Σ Functions）Determined for Each Wiring Unit（ $\Sigma \mathrm{A}, \mathrm{\Sigma B}, \Sigma \mathrm{\Sigma}$ ） For details about how Σ function values are computed and determined，see appendix 1 ．	
Voltage（V）	Urms Σ ：true rms value，Umn Σ ：rectified mean value calibrated to the rms value，Urmn Σ ：current rectified mean value，Udc乏：simple average，Uac乏：AC component
Current（A）	Irms Σ ：true rms value，Imn Σ ：rectified mean value calibrated to the rms value，Irmn ：current rectified mean value，IdcE：simple average，IacE：AC component
Active power（W）	P Σ
Apparent power（VA）	S乏
Reactive power（var）	Q
Power factor	$\lambda \Sigma$
Phase difference（ ${ }^{\circ}$ ）	Ф Σ
Corrected Power（W）	```Pc\Sigma Applicable standards IEC76-1 (1976), IEC76-1 (2011)```
Integration	WPE：sum of positive and negative watt hours WP $+\Sigma$ ：sum of positive P （consumed watt hours） WP－Σ ：sum of negative P （watt hours returned to the power supply） $\mathrm{q} \Sigma$ ：sum of positive and negative ampere hours $q+\Sigma$ ：sum of positive I（ampere hours） $\mathrm{q}-\Sigma$ ：sum of negative I（ampere hours） WSE：Integration of S Σ WQE：Integration of QE

Harmonic Measurement Computation Feature
\bullet Measurement Fentionser

Voltage（ $)$	$\mathrm{U}(\mathrm{k})$ ：rms voltage value of harmonic order $\mathrm{k}^{* 1}$ U：total rms voltage＊2
Current（A）	$\mathrm{I}(\mathrm{k})$ ：rms current value of harmonic order k I：total rms current＊2
Active power（W）	$P(k)$ ：active power of harmonic order k P ：total active power＊2
Apparent power（VA）	$\mathrm{S}(\mathrm{k})$ ：apparent power of harmonic order k S：total apparent power＊2
Reactive power（var）	$Q(k)$ ：reactive power of harmonic order k Q：total reactive power＊2
Power factor	$\lambda(k)$ ：power factor of harmonic order k λ ：total power factor＊2
Phase difference（ ${ }^{\circ}$ ）	$\Phi(\mathrm{k})$ ：phase difference between the voltage and

$\mathrm{U}(\mathrm{k})$ ：phase difference between harmonic voltage $\mathrm{U}(\mathrm{k})$ and the fundamental wave U（1）
$\Phi I(k)$ ：phase difference between harmonic current I（k） and the fundamental wave I（1）
Load circuit impedance（ Ω ）$\quad \mathrm{Z}(\mathrm{k})$ ：impedance of the load circuit in relation to harmonic order k
Load circuit resistance and reactance（ Ω ）

Rs（k）：resistance of the load circuit in relation to harmonic order k when resistor R ，inductor L ，and capacitor C are connected in series
Xs（k）：reactance of the load circuit in relation to harmonic order k when resistor R ，inductor L ，and capacitor C are connected in series
$R p(k)$ ：resistance of the load circuit in relation to harmonic order k when R, L ，and C are connected in parallel
$\mathrm{Xp}(\mathrm{k})$ ：reactance of the load circuit in relation to harmonic order k when R, L ，and C are connected in parallel

Fundamental component of voltage (V)	Ufnd： $\mathrm{U}(1)$
Fundamental component of current（A）	Ifnd： $\mathrm{I}(1)$
Fundamental active power（W）	Pfnd： $\mathrm{P}(1)$
Fundamental apparent power（VA）	Sfnd： $\mathrm{S}(1)$
Fundamental reactive power（var）	Qfnd： $\mathrm{Q}(1)$
Fundamental power factor	λ fnd：$\lambda(1)$
Phase difference between the fundamental voltage and current $\left({ }^{\circ}\right)$	
	Φ fnd：$\Phi(1)$

Harmonic distortion factor（\％）		Uhdf（k）：ratio of harmonic voltage $U(k)$ to $U(1)$ or U Indf（k）：ratio of harmonic current I（k）to I（1）or I Phdf（k）：ratio of harmonic active power $\mathrm{P}(\mathrm{k})$ to $\mathrm{P}(1)$ or P	
Total harmonic distortion（\％）		Uthd：ratio of the total harmonic voltage to $\mathrm{U}(1)$ or $\mathrm{U}^{* 3}$ lthd：ratio of the total harmonic current to I（1）or $1 * 3$ Pthd：ratio of the total harmonic active power to $\mathrm{P}(1)$ or $\mathrm{P}^{* 3}$	
Telephone harmonic factor［applicable standard：IEC34－1（1996）］ Uthf：voltage telephone harmonic factor，Ithf：current telephone harmonic factor			
Telephone influence factor［applicable standard：IEEE Std 100 （1996）］ Utif：voltage telephone influence factor，Itif：current telephone influence factor			
Harmonic voltage fact		hvf：harmonic voltage factor	
Harmonic current fact		hcf：harmonic current factor	
K－factor		Ratio of the squared sum weighted harmonic component to the squared sum of the harmonic currents	
－Measurement Functions（ Σ Functions）Determined for Each Wiring Unit（ $\Sigma \mathrm{A}, ~ \Sigma \mathrm{~EB}, \Sigma \mathrm{\Sigma C}$ ）			
Voltage（ $)$	U $\Sigma(1)$ ：rms voltage of harmonic order 1		UE：total rms voltage＊5
Current（A）	I（ 1 ）：rms current of harmonic order 1		1Σ ：total rms current ${ }^{5}$
Active power（M）	$\mathrm{P} \Sigma$（1）：active power of harmonic order 1		PE：total active power＊5
Apparent power（VA）	S Σ（1）：apparent power of harmonic order 1		SE：total apparent pow
Reactive power（var）	QE（1）：reactive power of harmonic order 1		QE：total reactive powe
Power factor	$\lambda \Sigma(1):$ power factor of harmonic order 1		$\lambda \Sigma$ ：total power factor ${ }^{\text {＋5 }}$
＊1 Harmonic order k is an integer from 0 to the upper limit of harmonic analysis．The 0th order is the DC component．The upper limit is determined automatically according to the PLL source frequency．It can go up to the 500th harmonic order． ＊2 The total value is determined according to the equation on page 4 of the appendix from the fundamental wave（1st harmonic）and all harmonic components（2nd harmonic to the upper limit of harmonic analysis）． The DC component can also be included． ＊3 Total harmonic values are determined from all harmonic components（the 2nd harmonic to the upper limit of harmonic analysis）according to the equations on page 5 of the appendix． ＊4 The expression may vary depending on the definitions in the standard．For details，see the corresponding standard． ＊5 The total value is determined according to the equation on page 4 of the appendix from the fundamental wave（1st harmonic）and all harmonic components（2nd harmonic to the upper limit of harmonic analysis）． The DC component can also be included．			
－Measurement Functions that Indicate Fundamental Voltage and Current Phase Differences between Input Elements These measurement functions indicate the phase differences between the fundamental voltage $U(1)$ of the smallest numbered input element in a wiring unit and the fundamental voltages $\mathrm{U}(1)$ or currents I（1）of other input elements．The following table indicates the measurement functions for a wiring unit that combines elements 1,2 ，and 3 ．			
Phase angle U1－U2 $\left(^{\circ}\right.$	©U1－U2：phase angle between U1（1）and the fundamental voltage of element 2，U2（1）		
Phase angle U1－U3（ ${ }^{\circ}$	©U1－U3：phase angle between U1（1）and the fundamental voltage of element $3, \mathrm{U} 3$（1）		
Phase angle U1－11（ ${ }^{\circ}$ ）	©U1－11：phase angle between U1（1）and the fundamental current of element 1，I1（1）		
Phase angle U2－12（ ${ }^{\circ}$ ）	©U2－I2：phase angle between U2（1）and the fundamental current of element 2，I2（1）		
Phase angle U3－13（ ${ }^{\circ}$ ）	ФU3－13：phase angle between U3（1）and the fundamental current of element 3,13 （1）		
EAM1U1 to EAM1U7（ ${ }^{\circ}$ ），EAM111 to EAM117（ ${ }^{\circ}$ ） Phase angles of the fundamental waves of U 1 to I 7 with the rising edge of the signal received through the Motor1（MTR1）Z terminal of the motor evaluation function as the reference．			
EAM3U1 to EAM3U7（ ${ }^{\circ}$ ），EAM311 to EAM317（ ${ }^{\circ}$ ） Phase angles of the fundamental waves of U 1 to I 7 with the rising edge of the signal received through the Motor3（MTR2）Z terminal of the moto evaluation function as the reference．			
Motor Evaluation Function（Option） Motor rotating speed Speed			
Motor torque	Torque		
Synchronous speed	SyncSp		
Slip（\％）	Slip		
Motor output	Pm		
Auxiliary input	AUX		
Auxiliary I／O			
External Clock Input Section Input connector type BNC			
Input level	TTL		
Sync signal input	Normal measurement：Frequency range：Same as the frequency measurement range Harmonic measurement：Frequency range： 0.1 Hz to 300 kHz ＊Input waveform： 50% duty ratio rectangular wave		
Trigger input	Input logic：Negative logic，falling edge Minimum pulse width： $1 \mu \mathrm{~s}$ Trigger delay：Within $(2 \mu \mathrm{~s}+12 \mu \mathrm{~s})$		
External Monitor			
Output format	Analog RGB output		
Output resolution	WXGA output， 1280×800 dots Approx． 60 Hz Vsync（ 66 MHz dot clock frequency）		

Remote, D/A (Option) Input connector type	Micro ribbon connector (Amphenol 57LE connector), 36-pin
Control signal	Integration RESET: EXT RESET START: EXT START STOP: EXT STOP BUSY: INTEG BUSY Updating Data HOLD: EXT HOLD SINGLE: EXT SINGLE
Input	0 to 5 V
Output	0 to 5 V
Peripheral Device Connection	
USB	
Ports	2
Electrical and mechan	cal Complies with USB Rev. 2.0
Supported transfer m	des HS (High Speed) mode (480 Mbps), FS (Full Speed) mode (12 Mbps), LS (Low Speed) mode (1.5 Mbps)
Compatible devices	Mass storage devices that comply with USB Mass Storage Class Ver. 1.1 Usable capacity: 8 TB, partition format: MBR/GPT, format type: FAT32/ FAT16/exFAT 104 or 109 keyboards that comply with USB HID Class Ver. 1.1 Mouse devices that comply with USB HID Class Ver. 1.1
Power supply	$5 \mathrm{~V}, 500 \mathrm{~mA}$ (each port) You cannot connect devices whose maximum current consumptions exceed 100 mA to two different ports on the instrument at the same time.
Computer Interface	
GP-IB Interface Input connector type	24-pin connector
Electrical and mechan	cal Complies with IEEE St'd 488-1978 (JIS C 1901-1987)
Functional specificatio	SH1, AH1, T6, L4, SR1, RL1, PP0, DC1, DT1, and C0
Protocol	Conforms to IEEE St'd 488.2-1992
Code	ISO (ASCII) code
Mode	Addressable mode
Address	0 to 30
Clear remote mode	Press UTILITY (LOCAL) to clear remote mode (except during Local Lockout).
Ethernet interface Connector type	RJ-45 connector
Ports	1
Electrical and mechanical	
Transmission system	Ethernet1000Base-T/100BASE-TX/10BASE-T
Communication proto	$\begin{aligned} & \mathrm{col} \\ & \mathrm{TCP/IP} \end{aligned}$
Supported services	FTP server, DHCP, DNS, remote control (VXI-11), SNTP, and FTP client
USB PC Interface Connector type	Type B connector (receptacle)
Ports	1
Electrical and mechan	cal Complies with USB 3.0
Supported transfer m	des SS (SuperSpeed) mode (5 Gbps), HS (High Speed) mode (480 Mbps), FS (Full Speed) mode (12 Mbps)
Supported protocols	USBTMC-USB488 (USB Test and Measurement Class Ver. 1.0)
PC system requireme	ts A PC with a USB port, running Windows 7, Windows 8.1, or Windows 10. A separate device driver is required to enable the connection with the PC.

System Maintenance Processing
Alarm Generation and Operation Fan stop \quad Fan stop alarm indication \quad Emergency operation stop after about 60 seconds* Internal temperature error \quad Temperature error alarm indication \quad Emergency operation stop*
*Emergency operation stop Stops the power supply for running the instrument Stops the power supply to elements, motor (MTR1/MTR2), and D/A output (/DA20) Generates intermittent beeps, MENU key in the SETUP area blinks in red Continues the fan operation

General Specifications	
Warm-up time	Approx. 30 minutes
Operating environment	Temperature $\quad 5^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$

WT5000

The following information is printed on the top.

Complies with 21 CFR 1040.10 and 1040.11
except for deviations pursuant to Laser
Notice No.50, dated June 24, 2007
2-9-32 Nakacho, Musashino-shi,
Tokyo 180-8750, Japan

760901 30A High Accuracy Element

Input terminal type	Voltage Plug-in terminal (safety terminal)
	Current Direct input: Plug-in terminal (safety terminal) External current sensor input: isolated BNC
Input type	Voltage Floating input through resistive voltage divider
	Current Floating input through shunt
Measurement range	```Voltage 1.5/3/6/10/15/30/60/100/150/300/600/1000 V (crest factor CF3) 0.75/1.5/3/5/7.5/15/30/50/75/150/300/500 V (crest factor CF6) 0.75/1.5/3/5/7.5/15/30/50/75/150/300/500 V (crest factor CF6A)```
	```Current Direct input 500 mA, 1 A, 2 A, 5 A, 10 A, 20 A, 30 A (crest factor CF3) 250 mA, 500 mA, 1 A, 2.5 A, 5 A, 10 A, 15 A (crest factor CF6) 250 mA, 500 mA, 1 A, 2.5 A, 5 A, 10 A, 15 A (crest factor CF6A)```
	External current sensor input   $50 \mathrm{mV}, 100 \mathrm{mV}, 200 \mathrm{mV}, 500 \mathrm{mV}, 1 \mathrm{~V}, 2 \mathrm{~V}, 5 \mathrm{~V}, 10 \mathrm{~V}$ (crest factor CF3)   $25 \mathrm{mV}, 50 \mathrm{mV}, 100 \mathrm{mV}, 250 \mathrm{mV}, 500 \mathrm{mV}, 1 \mathrm{~V}, 2.5 \mathrm{~V}, 5 \mathrm{~V}$ (crest factor CF6)   $25 \mathrm{mV}, 50 \mathrm{mV}, 100 \mathrm{mV}, 250 \mathrm{mV}, 500 \mathrm{mV}, 1 \mathrm{~V}, 2.5 \mathrm{~V}, 5 \mathrm{~V}$ (crest factor CF6A)
Input impedance	Voltage $10 \mathrm{M} \Omega \pm 1 \% / /$ approx. 15 pF
	Current   Direct input: $6.5 \mathrm{~m} \Omega \pm 10 \%$ + approx. $0.3 \mu \mathrm{H}$
	External current sensor input: $1 \mathrm{M} \Omega \pm 1 \% / /$ approx. 50 pF
Instantaneous maxim	allowable input (within 1 s)   Voltage   Peak value of 2.5 kV or RMS value of 1.5 kV , whichever is less
	Current   Direct input   Peak value of 150 A or rms value of 50 A , whichever is less.
	External current sensor input Peak value 10 times the range or 25 V , whichever is less
Continuous maximum	wable input   Voltage   Peak value of 1.6 kV or RMS value of 1.5 kV , whichever is less If the frequency of the input voltage exceeds 100 kHz , (1200 - f) Vrms or less. $f$ is the frequency of the input voltage in units of kHz .
	Current   Direct input   Peak value of 90 A or rms value of 33 A , whichever is less.
	External current sensor input Peak value 5 times the range or 25 V , whichever is less
Maximum rated voltage to earth (DC to $50 / 60 \mathrm{~Hz}$ ) Voltage input terminal 1000 V CAT II	
	Current input terminal 1000 V CAT II
	External current sensor input connector 1000 V CAT II
Influence of voltage to earth	
	When 1000 Vrms is applied between the input terminal and the WT5000 case with the voltage input terminals shorted, current input terminals open and external current sensor input terminals shorted. $50 / 60 \mathrm{~Hz}: \pm 0.01 \%$ of range or less. ```Reference value for up to 200 kHz Voltage \pm{(maximum rated range)/(rated range) }\times0.001\timesf%\mathrm{ of range } or less```
	```Current Direct input \pm{(maximum rated range)/(rated range) }\times0.001\timesf%\mathrm{ of range } or less```
	External current sensor input $\pm\{($ maximum rated range $) /$ (rated range $) \times 0.001 \times f \%$ of range $\}$ or less However, 0.01% or greater. The unit of f is kHz . The maximum range rating in the equation is for a voltage of 1000 V , direct current input of 30 A , and external current sensor input of 10 V .
A/D converter	Simultaneous conversion of voltage and current inputs. Resolution: 18 bits Sample rate: $10 \mathrm{MS} / \mathrm{s}$ max.

Measurement frequency bandwidth
$\mathrm{DC}, 0.1 \mathrm{~Hz}$ to 2 MHz

Lower limit of measurement frequency
Sync source period average method

Data update interval	
50 ms	45 Hz
100 ms	20 Hz
200 ms	10 Hz
500 ms	5 Hz
1 s	2 Hz
2 s	1 Hz
5 s	0.5 Hz
10 s	0.2 Hz
20 s	0.1 Hz

Digital filter average method	
FAST	100 Hz
MID	10 Hz
SLOW	1 Hz
VSLOW	0.1 Hz

Maximum display

Accuracy

Accuracy (6 months)

For the 1 year accuracy, multiply the 6 month accuracy by 1.5 .
140% of the rated voltage or current range (160% for the 1000 V range) 280% of the voltage and current range rating for CF6A (except 320\% for the 500 V range)

Condition
Temperature: $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$
Humidity: 30% RH to 75% RH
Input waveform: Sine wave
λ (power factor): 1
Voltage to ground: 0 V

Crest factor: CF3
Line filter: OFF
Period average method
Frequency filter: Used for signal frequencies at 1 kHz or less (for sync source period average method)
Sync source signal level: Same as the frequency measurement conditions Input range: DC 0% to $\pm 110 \%$ of range, $A C 1 \%$ to 110% of range Defined using rms values for AC
After the warm-up time has elapsed.
Wired condition after zero-level compensation or measurement range change. The unit of f in the accuracy equations is kHz .

Voltage	
DC	$\pm(0.02 \%$ of reading $+0.05 \%$ of range)
$0.1 \mathrm{~Hz} \leq \mathrm{f}<10 \mathrm{~Hz}$	$\pm(0.03 \%$ of reading $+0.05 \%$ of range)
$10 \mathrm{~Hz} \leq \mathrm{f}<45 \mathrm{~Hz}$	$\pm(0.03 \%$ of reading $+0.05 \%$ of range)
$45 \mathrm{~Hz} \leq \mathrm{f} \leq 66 \mathrm{~Hz}$	$\pm(0.01 \%$ of reading $+0.02 \%$ of range)
$66 \mathrm{~Hz}<\mathrm{f} \leq 1 \mathrm{kHz}$	$\pm(0.03 \%$ of reading $+0.04 \%$ of range)
$1 \mathrm{kHz}<\mathrm{f} \leq 10 \mathrm{kHz}$	$\pm(0.1 \%$ of reading $+0.05 \%$ of range) Add $0.015 \times f \%$ of reading (10 V range or less).
$10 \mathrm{kHz}<\mathrm{f} \leq 50 \mathrm{kHz}$	$\pm(0.3 \%$ of reading $+0.1 \%$ of range)
$50 \mathrm{kHz}<\mathrm{f} \leq 100 \mathrm{kHz}$	$\pm(0.6 \%$ of reading $+0.2 \%$ of range)
$100 \mathrm{kHz}<\mathrm{f} \leq 500 \mathrm{kHz}$	$\pm\{(0.006 \times f) \%$ of reading $+0.5 \%$ of range $\}$
$500 \mathrm{kHz}<\mathrm{f} \leq 1 \mathrm{MHz}$	$\pm\{(0.022 \times f-8) \%$ of reading $+1 \%$ of range $\}$
Frequency bandwith	DC to 10 MHz (Typical)
Current	
DC	$\pm(0.02 \%$ of reading $+0.05 \%$ of range)
$0.1 \mathrm{~Hz} \leq \mathrm{f}<10 \mathrm{~Hz}$	$\pm(0.03 \%$ of reading $+0.05 \%$ of range)
$10 \mathrm{~Hz} \leq \mathrm{f}<45 \mathrm{~Hz}$	$\pm(0.03 \%$ of reading $+0.05 \%$ of range)
$45 \mathrm{~Hz} \leq \mathrm{f} \leq 66 \mathrm{~Hz}$	$\pm(0.01 \%$ of reading $+0.02 \%$ of range)
$66 \mathrm{~Hz}<\mathrm{f} \leq 1 \mathrm{kHz}$	$\pm(0.03 \%$ of reading $+0.04 \%$ of range)
$1 \mathrm{kHz}<\mathrm{f} \leq 10 \mathrm{kHz}$	$\pm(0.1 \%$ of reading $+0.05 \%$ of range)
$10 \mathrm{kHz}<\mathrm{f} \leq 50 \mathrm{kHz}$	$\pm(0.3 \%$ of reading $+0.1 \%$ of range)
$50 \mathrm{kHz}<\mathrm{f} \leq 100 \mathrm{kHz}$	$\pm(0.6 \%$ of reading $+0.2 \%$ of range)
$100 \mathrm{kHz}<\mathrm{f} \leq 200 \mathrm{kHz}$	$\pm\{(0.00725 \times f-0.125) \%$ of reading $+0.5 \%$ of range $\}$
$200 \mathrm{kHz}<\mathrm{f} \leq 500 \mathrm{kHz}$	$\pm\{(0.00725 \times \mathrm{f}-0.125) \%$ of reading $+0.5 \%$ of range $\}$
$500 \mathrm{kHz}<\mathrm{f} \leq 1 \mathrm{MHz}$	$\pm\{(0.022 \times f-8) \%$ of reading $+1 \%$ of range $\}$
Frequency bandwidth	Direct input: DC to 5 MHz (typical) External current sensor input: DC to 5 MHz (typical)
Active power (power factor 1)	
DC	$\pm(0.02 \%$ of reading $+0.05 \%$ of range)
$0.1 \mathrm{~Hz} \leq \mathrm{f}<10 \mathrm{~Hz}$	$\pm(0.08 \%$ of reading $+0.1 \%$ of range)
$10 \mathrm{~Hz} \leq \mathrm{f}<30 \mathrm{~Hz}$	$\pm(0.08 \%$ of reading $+0.1 \%$ of range)
$30 \mathrm{~Hz} \leq \mathrm{f}<45 \mathrm{~Hz}$	$\pm(0.05 \%$ of reading $+0.05 \%$ of range)
$45 \mathrm{~Hz} \leq \mathrm{f} \leq 66 \mathrm{~Hz}$	$\pm(0.01 \%$ of reading $+0.02 \%$ of range)
$66 \mathrm{~Hz}<\mathrm{f} \leq 1 \mathrm{kHz}$	$\pm(0.05 \%$ of reading $+0.05 \%$ of range)
$1 \mathrm{kHz}<\mathrm{f} \leq 10 \mathrm{kHz}$	$\pm(0.15 \%$ of reading $+0.1 \%$ of range) Add $0.01 \times f \%$ of reading (10 V range or less).
$10 \mathrm{kHz}<\mathrm{f} \leq 50 \mathrm{kHz}$	$\pm(0.3 \%$ of reading $+0.2 \%$ of range)
$50 \mathrm{kHz}<\mathrm{f} \leq 100 \mathrm{kHz}$	$\pm(0.7 \%$ of reading $+0.3 \%$ of range)
$100 \mathrm{kHz}<\mathrm{f} \leq 200 \mathrm{kHz}$	$\pm\{(0.008 \times \mathrm{f}) \%$ of reading $+1 \%$ of range $\}$
$200 \mathrm{kHz}<\mathrm{f} \leq 500 \mathrm{kHz}$	$\pm\{(0.008 \times \mathrm{f}) \%$ of reading $+1 \%$ of range $\}$
$500 \mathrm{kHz}<\mathrm{f} \leq 1 \mathrm{MHz}$	$\pm\{(0.048 \times f-20) \%$ of reading $+1 \%$ of range $\}$

- For the direct current input range, add the following values to the accuracies listed above DC current accuracy: 0.1 mA
DC power accuracy: ($0.1 \mathrm{~mA} /$ rated value of the direct current input range) $\times 100 \%$ of range
- For the accuracies of waveform data functions Upk and lpk

Add the following values (reference values) to the accuracies listed above
The effective input range is within $\pm 300 \%$ ($\pm 600 \%$ when the crest factor is set to CF6 or CF6A) of the range.

Voltage input: $\{\sqrt{1.5 / \text { range }}+0.5\} \%$ of range
Direct current input range
$\{\sqrt{1 / \text { range }} \%$ of range $+10 \mathrm{~mA}\}$
External current sensor input range
$\{\sqrt{0.01 / \text { range }}+0.5\} \%$ of range (50 mV to 200 mV)
$\{\sqrt{0.1 / \text { range }}+0.5\} \%$ of range (500 mV to 10 V)

- Influence of temperature changes after zero-level compensation or range change

Add the following values to the accuracies listed above.

- DC voltage accuracy: $\pm 0.02 \%$ of range $/{ }^{\circ} \mathrm{C}(1.5 \mathrm{~V}$ to 10 V range)
$\pm 0.005 \%$ of range $/{ }^{\circ} \mathrm{C}(15 \mathrm{~V}$ to 1000 V range)
- Direct current input DC accuracy: $\pm 0.1 \mathrm{~mA}{ }^{\circ} \mathrm{O}$
- External current sensor input DC accuracy: $\pm 50 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}(50 \mathrm{mV}$ to 200 mV$)$ $\pm 200 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}(0.5 \mathrm{~V}$ to 10 V$)$
For the DC power accuracy, add the voltage influence $\times I$ and the current influence $\times U$.
U is the voltage reading (V).
I is the current reading (A).
- Influence of self-generated heat caused by current input

Add the following values to the current accuracy:
For the power accuracy, add the voltage and the current influence.

- AC input signal

Current, active power, apparent power: $0.00002 \times 1^{2} \%$ of reading

- DC input signal

Current: $0.00002 \times 1^{2} \%$ of reading $+3 \times I^{2} \mathrm{~mA}$
Power: $0.00002 \times \mathrm{I}^{2} \%$ of reading $+3 \times \mathrm{I}^{2} \mathrm{~mA} \times \mathrm{U}$
U is the voltage reading (V)
I is the current reading (A).
Even if the current input decreases, the influence from self-generated heat continues until the temperature of the shunt resistor decreases,

- Guaranteed accuracy ranges for frequency, voltage, and current

All accuracy figures for 0.1 Hz to 10 Hz are reference values.
The voltage and power accuracy figures for 30 kHz to 100 kHz when the voltage exceeds 750 V are reference values.
The current and power accuracy figures for DC, 10 Hz to 45 Hz , and 400 Hz to 100 kHz when the current exceeds 20 A are reference values.

- Influence of data update interva

Add the following value for signal sync period average
$50 \mathrm{~ms}: 0.03 \%$ of reading
$100 \mathrm{~ms}: 0.02 \%$ of reading

- Accuracy when the crest factor is set to CF6 or CF6A:

The same as the accuracy when the crest factor is CF3 after doubling the range

Power factor (λ) influence	When $\lambda=0$ Apparent power reading $\times 0.02 \%$ in the range of 45 Hz to 66 Hz . For other frequency ranges, see below. However, note that these figures are reference values. Apparent power reading $\times(0.02+0.05 \times f) \%$
	When $0<\lambda<1$ (Power reading) \times [(power reading error \%) + (power range error \%) \times (power range/indicated apparent power value) $+\{\tan \varphi \times$ (influence when $\lambda=0$) \%\}], where φ is the phase angle between the voltage and current.
Temperature coefficient	$\pm 0.01 \%$ of reading $/{ }^{\circ} \mathrm{C}\left(5^{\circ} \mathrm{C}\right.$ to $18^{\circ} \mathrm{C}$ or $28^{\circ} \mathrm{C}$ to $\left.40^{\circ} \mathrm{C}\right)$
Influence of humidity	। Add to the voltage and active power accuracies: $\pm 0.00022 \times \mid$ HUM $-50 \mid \times f \%$ of reading: $f \leq 40 \mathrm{kHz}$ $\pm 0.0087 \times$ HUM $-50 \mid \%$ of reading: $f>40 \mathrm{kHz}$ Reference: Add to the power factor error. When $\lambda=0$ Apparent power reading $\times 0.00002 \times\|H U M-50\| \times f \%$ When $0<\lambda<1$ (Power reading) $\times\{($ power reading error $\%)+($ power range error $\%) \times($ power range/indicated apparent power value) $+[\tan \varphi \times$ (influence when $\lambda=0) \%]\}$, HUM: Relative humidity [\%RH] The unit of f in the accuracy equations is kHz .
Effective input range	Udc, Idc: 0% to $\pm 130 \%$ of the measurement range (excluding the $1000 \text { V range)* }$ Udc 1000 V range: 0% to $\pm 150 \%$ * Urms, Irms: 1% to 130% of the measurement range* Umn, Imn: 10% to 130% of the measurement range* Urmn, Irmn: 10\% to 130% of the measurement range* Power DC measurement: 0% to $\pm 130 \%$ * AC measurement: 1% to $130 \%^{*}$ of the voltage and current ranges; up to $\pm 130 \%^{*}$ of the power range
	*The accuracy for 110% to 130% of the measurement range (excluding the 1000 V range) is range error $\times 1.5$. If the input voltage exceeds 600 V , add 0.02% of reading. However, the signal level for the signal sync period average must meet the input signal level for frequency measurement. When the crest factor is set to CF6 or CF6A, double the lower limit.
Accuracy of apparent power S	Voltage accuracy + current accuracy
Accuracy of reactive power Q	Accuracy of apparent power $+\left(\sqrt{1.0002-\lambda^{2}}-\sqrt{1-\lambda^{2}}\right) \times 100 \%$ of range

Accuracy of power factor λ	$\pm\left[(\lambda-\lambda / 1.0002)+\mid \cos \varphi-\cos \left\{\varphi+\sin ^{-1}(\right.\right.$ (influence from the power factor when $\lambda=0) \% / 100)\} \mid] \pm 1$ digit	
	The voltage and current must be within their rated ranges.	
Accuracy of phase difference Φ	$\pm\left[\left\|\varphi-\left\{\cos ^{-1}(\lambda / 1.0002)\right\}\right\|+\sin ^{-1}\{\right.$ (influence from the power factor when $\lambda=0) \% / 100\}]$ deg ± 1 digit	
	The voltage and current must be within their rated ranges.	
Lead and lag detection	Phase difference: $\pm\left(5^{\circ}\right.$ to $\left.175^{\circ}\right)$ Frequency: 20 Hz to 10 kHz Condition: Sine wave At least 50% of the measurement range (at least 100% for CF6 and CF6A)	
Line filter	Bessel, 5th order LPF, fc: 1 MHz Voltage, current Up to 100 kHz : Add ($20 \times \mathrm{f} / \mathrm{fc}$) \% of reading Power Up to 100 kHz : Add ($40 \times \mathrm{f} / \mathrm{fc}$) \% of reading For LPFs less than or equal to 100 kHz , see "Line filter".	
Frequency measurement	Frequency measurement range	
	Data update interval	Measurement range
	50 ms	$45 \mathrm{~Hz} \leq \mathrm{f} \leq 2 \mathrm{MHz}$
	100 ms	$20 \mathrm{~Hz} \leq \mathrm{f} \leq 2 \mathrm{MHz}$
	200 ms	$10 \mathrm{~Hz} \leq \mathrm{f} \leq 2 \mathrm{MHz}$
	500 ms	$5 \mathrm{~Hz} \leq \mathrm{f} \leq 2 \mathrm{MHz}$
	1 s	$2 \mathrm{~Hz} \leq \mathrm{f} \leq 2 \mathrm{MHz}$
	2 s	$1 \mathrm{~Hz} \leq \mathrm{f} \leq 2 \mathrm{MHz}$
	5 s	$0.5 \mathrm{~Hz} \leq \mathrm{f} \leq 2 \mathrm{MHz}$
	10 s	$0.2 \mathrm{~Hz} \leq \mathrm{f} \leq 2 \mathrm{MHz}$
	20 s	$0.1 \mathrm{~Hz} \leq \mathrm{f} \leq 2 \mathrm{MHz}$

Accuracy: $\pm 0.06 \%$ of reading $\pm 0.1 \mathrm{mHz}$
Conditions:
Input signal level:
CF3: At least 30% of the measurement rang
CF6/6A: At least 60% of the measurement range
However, at least 50% of the range if the signal is less than or equal to twice the lower measurement frequency
Frequency filter
$0.1 \mathrm{~Hz} \leq \mathrm{f}<100 \mathrm{~Hz}: 100 \mathrm{~Hz}$
$100 \mathrm{~Hz} \leq \mathrm{f}<1 \mathrm{kHz}: 1 \mathrm{kHz}$
$1 \mathrm{kHz} \leq \mathrm{f}<100 \mathrm{kHz}: 100 \mathrm{kHz}$
Harmonic measurement PLL source input level
50% or more of the rated measurement range when the crest factor is CF3.
100% or more of the rated measurement range when the crest factor is CF6 or CF6A.
Accuracy
Add the following accuracy values to the normal measurement accuracy values.

- When line filters are turned off

Frequency	Voltage, current
$0.1 \mathrm{~Hz} \leq \mathrm{f}<10 \mathrm{~Hz}$	$\pm(0.01 \%$ of reading $+0.03 \%$ of range $)$
$10 \mathrm{~Hz} \leq \mathrm{f}<45 \mathrm{~Hz}$	$\pm(0.01 \%$ of reading $+0.03 \%$ of range $)$
$45 \mathrm{~Hz} \leq \mathrm{f} \leq 66 \mathrm{~Hz}$	$\pm(0.01 \%$ of reading $+0.03 \%$ of range $)$
$66 \mathrm{~Hz}<\mathrm{f} \leq 440 \mathrm{~Hz}$	$\pm(0.01 \%$ of reading $+0.03 \%$ of range $)$
$440 \mathrm{~Hz}<\mathrm{f} \leq 1 \mathrm{kHz}$	$\pm(0.01 \%$ of reading $+0.03 \%$ of range $)$
$1 \mathrm{kHz}<\mathrm{f} \leq 10 \mathrm{kHz}$	$\pm(0.01 \%$ of reading $+0.03 \%$ of range $)$
$10 \mathrm{kHz}<\mathrm{f} \leq 50 \mathrm{kHz}$	$\pm(0.05 \%$ of reading $+0.1 \%$ of range $)$
$50 \mathrm{kHz}<\mathrm{f} \leq 100 \mathrm{kHz}$	$\pm(0.1 \%$ of reading $+0.2 \%$ of range $)$
$100 \mathrm{kHz}<\mathrm{f} \leq 500 \mathrm{kHz}$	$\pm(0.1 \%$ of reading $+0.5 \%$ of range $)$
$500 \mathrm{kHz}<\mathrm{f} \leq 1.5 \mathrm{MHz}$	$\pm(0.5 \%$ of reading $+2 \%$ of range $)$

Frequency	Power
$0.1 \mathrm{~Hz} \leq \mathrm{f}<10 \mathrm{~Hz}$	$\pm(0.02 \%$ of reading $+0.06 \%$ of range $)$
$10 \mathrm{~Hz} \leq \mathrm{f}<45 \mathrm{~Hz}$	$\pm(0.02 \%$ of reading $+0.06 \%$ of range $)$
$45 \mathrm{~Hz} \leq \mathrm{f} \leq 66 \mathrm{~Hz}$	$\pm(0.02 \%$ of reading $+0.06 \%$ of range $)$
$66 \mathrm{~Hz}<\mathrm{f} \leq 440 \mathrm{~Hz}$	$\pm(0.02 \%$ of reading $+0.06 \%$ of range $)$
$440 \mathrm{~Hz}<\mathrm{f} \leq 1 \mathrm{kHz}$	$\pm(0.02 \%$ of reading $+0.06 \%$ of range $)$
$1 \mathrm{kHz}<\mathrm{f} \leq 10 \mathrm{kHz}$	$\pm(0.02 \%$ of reading $+0.06 \%$ of range $)$
$10 \mathrm{kHz}<\mathrm{f} \leq 50 \mathrm{kHz}$	$\pm(0.1 \%$ of reading $+0.2 \%$ of range $)$
$50 \mathrm{kHz}<\mathrm{f} \leq 100 \mathrm{kHz}$	$\pm(0.2 \%$ of reading $+0.4 \%$ of range $)$
$100 \mathrm{kHz}<\mathrm{f} \leq 500 \mathrm{kHz}$	$\pm(0.2 \%$ of reading $+1 \%$ of range $)$
$500 \mathrm{kHz}<\mathrm{f} \leq 1.5 \mathrm{MHz}$	$\pm(1 \%$ of reading $+4 \%$ of range $)$

- When line filters are turned on

Add the line filter influence to the accuracy values when the line filters are turned off.

- When the crest factor is set to CF3
- When λ (the power factor) is 1
- Power figures that exceed 10 kHz are reference values.
- For the voltage range, add 25 mV to the voltage accuracy and (25 mV / current range rating) $\times 100 \%$ of range to the power accuracy.
- For the direct current input range, add 20 mA to the current accuracy and ($20 \mathrm{mV} /$ current range rating) $\times 100 \%$ of range to the power accuracy.
－For the external current sensor range，add 2 mV to the current accuracy and（ $2 \mathrm{mV} /$ rated value of the external current sensor range）\times 100% of range to the power accuracy．
－When the number of FFT points is 1024 ，add $\pm 0.2 \%$ to the voltage and current range errors and $\pm 0.4 \%$ to the power range error．
－Add $(n / 500) \%$ of reading to the $\mathrm{n}^{\text {th }}$ component of the voltage and current， and add（ $\mathrm{n} / 250$ ）\％of reading to the $\mathrm{n}^{\text {th }}$ component of the power
－The accuracy when the crest factor is CF6 or CF6A is the same as the accuracy when the crest factor is 3 after doubling the measurement range．
－The guaranteed accuracy ranges for frequency，voltage，and current， are the same as the guaranteed ranges for normal measurement．
－The neighboring harmonic orders may be affected by the side lobes from the input harmonic order．

When FFT points is set to 8192
When the frequency of the PLL source is 2 Hz or greater，for $\mathrm{n}^{\text {th }}$ order component input，add $\{[\mathrm{n} /(\mathrm{m}+1)] / 50\} \%$ of（the $\mathrm{n}^{\text {th }}$ order reading）to the $\mathrm{n}+\mathrm{m}^{\text {th }}$ order and $\mathrm{n}-\mathrm{m}^{\text {th }}$ order of the voltage and current，and add $\{[n /(m+1)] / 25\} \%$ of（the $n^{\text {th }}$ order reading）to the $n+m^{\text {th }}$ order and $n-\mathrm{m}^{\text {th }}$ order of the power．
When the frequency of the PLL source is less than 2 Hz ，for $\mathrm{n}^{\text {th }}$ order component input，add $\{[\mathrm{n} /(\mathrm{m}+1)] / 20\} \%$ of（the $\mathrm{n}^{\text {th }}$ order reading）to the $\mathrm{n}+\mathrm{m}^{\text {th }}$ order and $\mathrm{n}-\mathrm{m}^{\text {th }}$ order of the voltage and current，and add $\{[\mathrm{n} /(\mathrm{m}+1)] / 10\} \%$ of（the $\mathrm{n}^{\text {th }}$ order reading）to the $\mathrm{n}+\mathrm{m}^{\text {th }}$ order and $\mathrm{n}-\mathrm{m}^{\text {th }}$ order of the power．

When FFT points is set to 1024
When the frequency of the PLL source is 75 Hz or greater，for n order component input，add（ $\{n /(m+1)\} / 50) \%$ of（the $n^{\text {th }}$ order reading）to the $\mathrm{n}+\mathrm{m}^{\text {th }}$ order and $\mathrm{n}-\mathrm{m}^{\text {th }}$ order of the voltage and current，and add（ $\{\mathrm{n} /(\mathrm{m}+1)\} / 25) \%$ of（the $\mathrm{n}^{\text {th }}$ order reading）to the n $\mathrm{m}^{\text {th }}$ order and $\mathrm{n}-\mathrm{m}^{\text {th }}$ order of the power．

When the frequency of the PLL source is less than 75 Hz ，for $\mathrm{n}^{\text {th }}$ order component input，add $(\{n /(m+1)\} / 5) \%$ of（the $\mathrm{n}^{\text {th }}$ order reading）to the $n+m^{\text {th }}$ order and $n-m^{\text {th }}$ order of the voltage and current，and add $(2 \times\{n /(m+1)\} / 5) \%$ of（the $n^{\text {th }}$ order reading）to the $n+m^{\text {th }}$ order and $\mathrm{n}-\mathrm{m}^{\text {th }}$ order of the power．

Dimensions

Dimensions	Approx． $145 \mathrm{~mm}(\mathrm{H}) \times 42 \mathrm{~mm}(\mathrm{~W}) \times 297 \mathrm{~mm}(\mathrm{D})$ ＊The depth includes the slide cover $(293 \mathrm{~mm}$ if slide cover is excluded）． Weight\quad Approx． 900 g

Connection \quad 50－pin B to B connector

760901 30A High Accuracy Element

The following information is printed on the side．

```
CLASS 1 LASER PRODUCT
クラスルレーザ製品
1 1类激光产品
(IEC 60825-1:2007, GB 7247.1-2012)
```

Complies with 21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No．50，dated June 24， 2007
2－9－32 Nakacho，Musashino－shi，
Tokyo 180－8750，Japan

760902 5A High Accuracy Element

Input terminal type	Voltage Plug－in terminal（safety terminal）
	Current Direct input：Plug－in terminal（safety terminal） External current sensor input：isolated BNC
Input type	Voltage Floating input through resistive voltage divider
	Current Floating input through shunt
Measurement range	```Voltage 1.5/3/6/10/15/30/60/100/150/300/600/1000 V (crest factor CF3) 0.75/1.5/3/5/7.5/15/30/50/75/150/300/500 V (crest factor CF6) 0.75/1.5/3/5/7.5/15/30/50/75/150/300/500 V (crest factor CF6A)```
	Current Direct input $5 \mathrm{~mA}, 10 \mathrm{~mA}, 20 \mathrm{~mA}, 50 \mathrm{~mA}, 100 \mathrm{~mA}, 200 \mathrm{~mA}, 500 \mathrm{~mA}, 1 \mathrm{~A}, 2 \mathrm{~A}$ ， 5 A（crest factor CF3） $2.5 \mathrm{~mA}, 5 \mathrm{~mA}, 10 \mathrm{~mA}, 25 \mathrm{~mA}, 50 \mathrm{~mA}, 100 \mathrm{~mA}, 250 \mathrm{~mA}, 500 \mathrm{~mA}$ ， 1 A，2．5 A（crest factor CF6） $2.5 \mathrm{~mA}, 5 \mathrm{~mA}, 10 \mathrm{~mA}, 25 \mathrm{~mA}, 50 \mathrm{~mA}, 100 \mathrm{~mA}, 250 \mathrm{~mA}, 500 \mathrm{~mA}$ ， $1 \mathrm{~A}, 2.5 \mathrm{~A}$（crest factor CF6A）
	External current sensor input $50 \mathrm{mV}, 100 \mathrm{mV}, 200 \mathrm{mV}, 500 \mathrm{mV}, 1 \mathrm{~V}, 2 \mathrm{~V}, 5 \mathrm{~V}, 10 \mathrm{~V}$（crest factor CF3） $25 \mathrm{mV}, 50 \mathrm{mV}, 100 \mathrm{mV}, 250 \mathrm{mV}, 500 \mathrm{mV}, 1 \mathrm{~V}, 2.5 \mathrm{~V}, 5 \mathrm{~V}$（crest factor CF6） $25 \mathrm{mV}, 50 \mathrm{mV}, 100 \mathrm{mV}, 250 \mathrm{mV}, 500 \mathrm{mV}, 1 \mathrm{~V}, 2.5 \mathrm{~V}, 5 \mathrm{~V}$（crest factor CF6A）
Input impedance	Voltage $10 \mathrm{M} \Omega \pm 1 \% / /$ approx． 15 pF
	Current Direct input： $0.5 \Omega \pm 10 \%+$ approx． $0.3 \mu \mathrm{H}$（ 200 mA or lower ranges） $0.11 \Omega \pm 10 \%+$ approx． $0.3 \mu \mathrm{H}$（ 500 mA or higher ranges）
	External current sensor input： $1 \mathrm{M} \Omega \pm 1 \% / /$ approx． 50 pF
Instantaneous maximum allowable input（within 1 s） Voltage Peak value of 2.5 kV or RMS value of 1.5 kV ，whichever is less	
	Current Direct input Peak value of 30 A or rms value of 15 A ，whichever is less．
	External current sensor input Peak value 10 times the range or 25 V ，whichever is less

Continuous maximum allowable input
Voltage
Peak value of 1.6 kV or RMS value of 1.5 kV ，whichever is less
If the frequency of the input voltage exceeds 100 kHz ，
$(1200-\mathrm{f})$ Vrms or less． f is the frequency of the input voltage in units
of kHz

- For the direct current input range, add the following values to the accuracies listed above DC current accuracy: $1 \mu \mathrm{~A}$
DC power accuracy: ($1 \mu \mathrm{~A} /$ rated value of the direct current input range $) \times 100 \%$ of range
- For the accuracies of waveform data functions Upk and Ipk

Add the following values (reference values) to the accuracies listed above
The effective input range is within $\pm 300 \%$ ($\pm 600 \%$ when the crest factor is set to CF6 or CF6A) of the range.

Voltage input: $\{\sqrt{1.5 / \text { range }}+0.5\} \%$ of range
Direct current input range
$\{[\sqrt{0.01 / \text { range }}+0.5] \%$ of range $+100 \mu \mathrm{~A}\}(200 \mathrm{~mA}$ or lower ranges $)$
$\{[\sqrt{0.1 / \text { range }}+0.5] \%$ of range $+100 \mu \mathrm{~A}\}(500 \mathrm{~mA}$ or higher ranges
External current sensor input range
$\{\sqrt{0.01 / \text { range }}+0.5\} \%$ of range (50 mV to 200 mV)
$\{\sqrt{0.05 / \text { range }}+0.5\} \%$ of range (500 mV to 10 V)

- Influence of temperature changes after zero-level compensation or range change

Add the following values to the accuracies listed above.

- DC voltage accuracy: $\pm 0.02 \%$ of range $/{ }^{\circ} \mathrm{C}$ (1.5 V to 10 V range)
$\pm 0.005 \%$ of range $/{ }^{\circ} \mathrm{C} \pm(15 \mathrm{~V}$ to 1000 V range
- Direct current input DC accuracy: $\pm 1 \mu \mathrm{~A} \mathrm{~V}^{\circ} \mathrm{C}$
- External current sensor input DC accuracy: $\pm 50 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}(50 \mathrm{mV}$ to 200 mV$)$
$\pm 200 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}(0.5 \mathrm{~V}$ to 10 V$)$
For the DC power accuracy, add the voltage influence $\times I$ and the current influence $\times U$.
U is the voltage reading (V).
I is the current reading (A).
- Influence of self-generated heat caused by current input

Add the following values to the current accuracy:
For the power accuracy, add the voltage and the current influence.

- AC input signal

Current, active power, apparent power: $0.004 \times 12 \%$ of reading

- DC input signal

Current: $0.004 \times \mathrm{I}^{2} \%$ of reading $+6 \times \mathrm{I}^{2} \mu \mathrm{~A}$
Power: $0.004 \times I^{2} \%$ of reading $+6 \times I^{2} \mu \mathrm{~A} \times U$
U is the voltage reading (V).
I is the current reading (A).
Even if the current input decreases, the influence from self-generated heat continues until the temperature of the shunt resistor decreases.

- Guaranteed accuracy ranges for frequency, voltage, and current

All accuracy figures for 0.1 Hz to 10 Hz are reference values.
The voltage and power accuracy figures for 30 kHz to 100 kHz when the voltage exceeds 750 V are reference values.
The current and power accuracy figures for DC, 10 Hz to 45 Hz , and 400 Hz to 100 kHz when the current exceeds 20 A are reference values.

- Influence of data update interval

Add the following value for signal sync period average
$50 \mathrm{~ms}: 0.03 \%$ of reading
100 ms : 0.02% of reading

- Accuracy when the crest factor is set to CF6 or CF6A:

The same as the accuracy when the crest factor is CF3 after doubling the range.
Power factor (λ) influence When $\lambda=0$
Apparent power reading $\times 0.02 \%$ in the range of 45 Hz to 66 Hz . For other frequency ranges, see below. However, note that these figures are reference values
Apparent power reading $\times(0.02+0.05 \times f) \%$
When $0<\lambda<1$
(Power reading) \times [(power reading error \%) + (power range error \%) \times (power range/indicated apparent power value) $+\{\tan \varphi \times$ (influence when $\lambda=0$) \%\}],
where φ is the phase angle between the voltage and current.
Temperature coefficient $\quad \pm 0.01 \%$ of reading $/{ }^{\circ} \mathrm{C}\left(5^{\circ} \mathrm{C}\right.$ to $18^{\circ} \mathrm{C}$ or $28^{\circ} \mathrm{C}$ to $\left.40^{\circ} \mathrm{C}\right)$
Influence of humidity I Add to the voltage and active power accuracies:
$\pm 0.00022 \times|\mathrm{HUM}-50| \times f \%$ of reading: $f \leq 40 \mathrm{kHz}$
$\pm 0.0087 \times \mid$ HUM $-50 \mid \%$ of reading: $f>40 \mathrm{kHz}$
Reference: Add to the power factor error
When $\lambda=0$
Apparent power reading $\times 0.00002 \times|H U M-50| \times f \%$
When $0<\lambda<1$
(Power reading) $\times\{$ (power reading error \%) + (power range error \%) \times (power range/indicated apparent power value) $+[\tan \varphi \times$ (influence when $\lambda=0) \%]$,
HUM: Relative humidity [\%RH]
HUM: Relative humidity [\%RH]
The unit of f in the accuracy equations is kHz .

Effective input range	Udc, Idc: 0% to $\pm 130 \%$ of the measurement range (excluding the 1000 V range)* Udc 1000 V range: 0% to $\pm 150 \%$ * Urms, Irms: 1% to 130% of the measurement range* Umn, Imn: 10% to 130% of the measurement range* Urmn, Irmn: 10\% to 130% of the measurement range* Power DC measurement: 0% to $\pm 130 \%$ * AC measurement: 1% to $130 \%{ }^{*}$ of the voltage and current ranges; up to $\pm 130 \%^{*}$ of the power range *The accuracy for 110% to 130% of the measurement range (excluding the 1000 V range) is range error $\times 1.5$. If the input voltage exceeds 600 V , add 0.02% of reading. However, the signal level for the signal sync period average must meet the input signal level for frequency measurement. When the crest factor is set to CF6 or CF6A, double the lower limit.
Accuracy of apparent power S	Voltage accuracy + current accuracy
Accuracy of reactive power Q	Accuracy of apparent power $+\left(\sqrt{1.0002-\lambda^{2}}-\sqrt{1-\lambda^{2}}\right) \times 100 \%$ of range

Accuracy of power factor λ	$\pm\left[(\lambda-\lambda / 1.0002)+\mid \cos \varphi-\cos \left\{\varphi+\sin ^{-1}(\right.\right.$ (influence from the power factor when $\lambda=0) \% / 100)\} \mid] \pm 1$ digit
	The voltage and current must be within their rated ranges.
Accuracy of phase difference Φ	$\pm\left[\left\|\varphi-\left\{\cos ^{-1}(\lambda / 1.0002)\right\}\right\|+\sin ^{-1}\{\right.$ (influence from the power factor when $\lambda=0) \% / 100\}]$ deg ± 1 digit
	The voltage and current must be within their rated ranges.
Lead and lag detection	Phase difference: $\pm\left(5^{\circ}\right.$ to $\left.175^{\circ}\right)$ Frequency: 20 Hz to 10 kHz Condition: Sine wave At least 50\% of the measurement range (at least 100\% for CF6 and CF6A)
Line filter	Bessel, 5th order LPF, fc: 1 MHz Voltage, current Up to 100 kHz : Add ($20 \times \mathrm{f} / \mathrm{fc}$) \% of reading Power Up to 100 kHz : Add ($40 \times \mathrm{f} / \mathrm{fc}$) \% of reading For LPFs less than or equal to 100 kHz , see "Line filter".

Frequency measurement Frequency measurement range

Data update interval	Measurement range
50 ms	$45 \mathrm{~Hz} \leq \mathrm{f} \leq 2 \mathrm{MHz}$
100 ms	$20 \mathrm{~Hz} \leq \mathrm{f} \leq 2 \mathrm{MHz}$
200 ms	$10 \mathrm{~Hz} \leq \mathrm{f} \leq 2 \mathrm{MHz}$
500 ms	$5 \mathrm{~Hz} \leq \mathrm{f} \leq 2 \mathrm{MHz}$
1 s	$2 \mathrm{~Hz} \leq \mathrm{f} \leq 2 \mathrm{MHz}$
2 s	$1 \mathrm{~Hz} \leq \mathrm{f} \leq 2 \mathrm{MHz}$
5 s	$0.5 \mathrm{~Hz} \leq \mathrm{f} \leq 2 \mathrm{MHz}$
10 s	$0.2 \mathrm{~Hz} \leq \mathrm{f} \leq 2 \mathrm{MHz}$
20 s	$0.1 \mathrm{~Hz} \leq \mathrm{f} \leq 2 \mathrm{MHz}$

Accuracy: $\pm 0.06 \%$ of reading $\pm 0.1 \mathrm{mHz}$
Conditions:
Input signal level:
CF3: At least 30% of the measurement range
CF6/6A: At least 60% of the measurement range
However, at least 50% of the range if the signal is less than or equal
to twice the lower measurement frequency
Frequency filter
$0.1 \mathrm{~Hz} \leq \mathrm{f}<100 \mathrm{~Hz}: 100 \mathrm{~Hz}$
$100 \mathrm{~Hz} \leq \mathrm{f}<1 \mathrm{kHz}: 1 \mathrm{kHz}$
$1 \mathrm{kHz} \leq \mathrm{f}<100 \mathrm{kHz}: 100 \mathrm{kHz}$

Harmonic measurement PLL source input level

50% or more of the rated measurement range when the crest factor is CF3.
100% or more of the rated measurement range when the crest factor is CF6 or CF6A.
Accuracy
Add the following accuracy values to the normal measurement accuracy values.

- When line filters are turned off

Frequency	Voltage, current
$0.1 \mathrm{~Hz} \leq \mathrm{f}<10 \mathrm{~Hz}$	$\pm(0.01 \%$ of reading $+0.03 \%$ of range $)$
$10 \mathrm{~Hz} \leq \mathrm{f}<45 \mathrm{~Hz}$	$\pm(0.01 \%$ of reading $+0.03 \%$ of range $)$
$45 \mathrm{~Hz} \leq \mathrm{f} \leq 66 \mathrm{~Hz}$	$\pm(0.01 \%$ of reading $+0.03 \%$ of range $)$
$66 \mathrm{~Hz}<\mathrm{f} \leq 440 \mathrm{~Hz}$	$\pm(0.01 \%$ of reading $+0.03 \%$ of range $)$
$440 \mathrm{~Hz}<\mathrm{f} \leq 1 \mathrm{kHz}$	$\pm(0.01 \%$ of reading $+0.03 \%$ of range $)$
$1 \mathrm{kHz}<\mathrm{f} \leq 10 \mathrm{kHz}$	$\pm(0.01 \%$ of reading $+0.03 \%$ of range $)$
$10 \mathrm{kHz}<\mathrm{f} \leq 50 \mathrm{kHz}$	$\pm(0.05 \%$ of reading $+0.1 \%$ of range $)$
$50 \mathrm{kHz}<\mathrm{f} \leq 100 \mathrm{kHz}$	$\pm(0.1 \%$ of reading $+0.2 \%$ of range $)$
$100 \mathrm{kHz}<\mathrm{f} \leq 500 \mathrm{kHz}$	$\pm(0.1 \%$ of reading $+0.5 \%$ of range $)$
$500 \mathrm{kHz}<\mathrm{f} \leq 1.5 \mathrm{MHz}$	$\pm(0.5 \%$ of reading $+2 \%$ of range $)$

Frequency	Power
$0.1 \mathrm{~Hz} \leq \mathrm{f}<10 \mathrm{~Hz}$	$\pm(0.02 \%$ of reading $+0.06 \%$ of range $)$
$10 \mathrm{~Hz} \leq \mathrm{f}<45 \mathrm{~Hz}$	$\pm(0.02 \%$ of reading $+0.06 \%$ of range $)$
$45 \mathrm{~Hz} \leq \mathrm{f} \leq 66 \mathrm{~Hz}$	$\pm(0.02 \%$ of reading $+0.06 \%$ of range $)$
$66 \mathrm{~Hz}<\mathrm{f} \leq 440 \mathrm{~Hz}$	$\pm(0.02 \%$ of reading $+0.06 \%$ of range $)$
$440 \mathrm{~Hz}<\mathrm{f} \leq 1 \mathrm{kHz}$	$\pm(0.02 \%$ of reading $+0.06 \%$ of range $)$
$1 \mathrm{kHz}<\mathrm{f} \leq 10 \mathrm{kHz}$	$\pm(0.02 \%$ of reading $+0.06 \%$ of range $)$
$10 \mathrm{kHz}<\mathrm{f} \leq 50 \mathrm{kHz}$	$\pm(0.1 \%$ of reading $+0.2 \%$ of range $)$
$50 \mathrm{kHz}<\mathrm{f} \leq 100 \mathrm{kHz}$	$\pm(0.2 \%$ of reading $+0.4 \%$ of range $)$
$100 \mathrm{kHz}<\mathrm{f} \leq 500 \mathrm{kHz}$	$\pm(0.2 \%$ of reading $+1 \%$ of range $)$
$500 \mathrm{kHz}<\mathrm{f} \leq 1.5 \mathrm{MHz}$	$\pm(1 \%$ of reading $+4 \%$ of range $)$

- When line filters are turned on

Add the line filter influence to the accuracy values when the line filters are turned off.

- When the crest factor is set to CF3
-When λ (the power factor) is 1
- Power figures that exceed 10 kHz are reference values.
- For the voltage range, add 25 mV to the voltage accuracy and (25 mV / current range rating) $\times 100 \%$ of range to the power accuracy.
- For the direct current input range, add $200 \mu \mathrm{~A}$ to the current accuracy and ($200 \mu \mathrm{~A}$ /current range rating $) \times 100 \%$ of range to the power accuracy.
- For the external current sensor range, add 2 mV to the current accuracy and ($2 \mathrm{mV} /$ rated value of the external current sensor range) \times 100% of range to the power accuracy.
- When the number of FFT points is 1024 , add $\pm 0.2 \%$ to the voltage and current range errors and $\pm 0.4 \%$ to the power range error.
- Add $(\mathrm{n} / 500) \%$ of reading to the $\mathrm{n}^{\text {th }}$ component of the voltage and current, and add $(n / 250) \%$ of reading to the $\mathrm{n}^{\text {th }}$ component of the power.
- The accuracy when the crest factor is CF6 or CF6A is the same as the
accuracy when the crest factor is 3 after doubling the measurement range.
- The guaranteed accuracy ranges for frequency, voltage, and current,
are the same as the guaranteed ranges for normal measurement.
- The neighboring harmonic orders may be affected by the side lobes from the input harmonic order.

When FFT points is set to 8192
When the frequency of the PLL source is 2 Hz or greater, for $\mathrm{n}^{\text {th }}$ order component input, add $\{[\mathrm{n} /(\mathrm{m}+1)] / 50\} \%$ of (the $\mathrm{n}^{\text {th }}$ order reading) to the $\mathrm{n}+\mathrm{m}^{\text {th }}$ order and $\mathrm{n}-\mathrm{m}^{\text {th }}$ order of the voltage and current, and add $\{[n /(m+1)] / 25\} \%$ of (the $\mathrm{n}^{\text {th }}$ order reading) to the $\mathrm{n}+\mathrm{m}^{\text {th }}$ order and $n-m^{\text {th }}$ order of the power.

When the frequency of the PLL source is less than 2 Hz , for $\mathrm{n}^{\text {th }}$ order component input, add $\{[\mathrm{n} /(\mathrm{m}+1)] / 20\} \%$ of (the $\mathrm{n}^{\text {th }}$ order reading) to the $\mathrm{n}+\mathrm{m}^{\text {th }}$ order and $\mathrm{n}-\mathrm{m}^{\text {th }}$ order of the voltage and current, and add $\{[n /(m+1)] / 10\} \%$ of (the $\mathrm{n}^{\text {th }}$ order reading) to the $\mathrm{n}+\mathrm{m}^{\text {th }}$ order and $\mathrm{n}-\mathrm{m}^{\text {th }}$ order of the power.

When FFT points is set to 1024
When the frequency of the PLL source is 75 Hz or greater, for $\mathrm{n}^{\text {th }}$ order component input, add $(\{n /(m+1)\} / 50) \%$ of (the $\mathrm{n}^{\text {th }}$ order reading) to the $\mathrm{n}+\mathrm{m}^{\text {th }}$ order and $\mathrm{n}-\mathrm{m}^{\text {th }}$ order of the voltage and current, and add $(\{\mathrm{n} /(\mathrm{m}+1)\} / 25) \%$ of (the $\mathrm{n}^{\text {th }}$ order reading) to the $\mathrm{n}+$ $\mathrm{m}^{\text {th }}$ order and $\mathrm{n}-\mathrm{m}^{\text {th }}$ order of the power.

When the frequency of the PLL source is less than 75 Hz , for $\mathrm{n}^{\text {th }}$ order component input, add ($\{\mathrm{n} /(\mathrm{m}+1)\} / 5) \%$ of (the $\mathrm{n}^{\text {th }}$ order reading) to the $\mathrm{n}+\mathrm{m}^{\text {th }}$ order and $\mathrm{n}-\mathrm{m}^{\text {th }}$ order of the voltage and current, and add $(2 \times\{n /(m+1)\} / 5) \%$ of (the $n^{\text {th }}$ order reading) to the $n+m^{\text {th }}$ order and $\mathrm{n}-\mathrm{m}^{\text {th }}$ order of the power.
Dimensions

Approx. $145 \mathrm{~mm}(\mathrm{H}) \times 42 \mathrm{~mm}(\mathrm{~W}) \times 297 \mathrm{~mm}(\mathrm{D})$
*The depth includes the slide cover (293 mm if slide cover is excluded).
Weight Approx. 720 g

Connection $\quad 50$-pin B to B connector

- 760902 5A High Accuracy Element

The following information is printed on the side.

Complies with 21 CFR 1040.10 and 1040.1
except for deviations pursuant to Laser
Notice No.50, dated June 24, 2007
2-9-32 Nakacho, Musashino-shi,
Tokyo 180-8750, Japan

Model and Suffix code

Model	Suffix Code	Descriptions
WT5000	Precision Power Analyzer	
-HE	English menu	
-D	UL/CSA Standard, PSE compliant	
-F	VDE/Korean Standard	
-H	Chinese Standard	
-N	Brazilian Standard	
-Q	BS Standard	
-R	Australian Standard	
-T	Taiwanese Standard	
/M1		32 GB Built-in Memory
/MTR1		
	/DA20*	Motor Evaluation 1
	20 CH D/A Output	

*When select from these options, please select only one. /MTR2 option requires installation of /MTR1 option

Model Suffix Code
760901
760902

User's manuals
Start guide (booklet), function/operation, communication manuals (electric file)

- Any company's names and product names mentioned in this document are trade names, trademarks or registered trademarks of their respective companies

NOTICE

- Before operating the product, read the user's manual thoroughly for proper and safe operation.

- Yokogawa's Approach to Preserving the Global Environment

- Yokogawa's electrical products are developed and produced in facilities that have received ISO14001 approval.
- In order to protect the global environment, Yokogawa's electrical products are designed in accordance with Yokogawa's Environmentally Friendy Product Design Guidelines and Product Design Assessment Criteria.

This is a Class A instrument based on Emission standards EN61326-1 and EN55011 and is designed for an industrial environment.
Operation of this equipment in a residential area may cause radio interference, in which case users will be responsible for any interference which they cause.

Accessory (sold separately)

Model number	Product	Description
366924 A 1	BNC-BNC Cable	1 m
366925 A $^{1+}$	BNC-BNC Cable	2 m
701901	1:1 Safety BNC Adapter Lead	1000 V CAT II for /MTR1, /MTR2
701902	Safety BNC-BNC Cable	1000 V CAT II, 1 m for /MTR1, /MTR2
701903	Safety BNC-BNC Cable	1000 V CAT II, 2 m for /MTR1, /MTR2
720930	Current clamp probe	40 Hz to $3.5 \mathrm{kHz}, \mathrm{AC50} \mathrm{~A}$
720931	Current clamp probe	40 Hz to $3.5 \mathrm{kHz}, \mathrm{AC} 200 \mathrm{~A}$
751542-E4	Rack Mounting Kit	For EIA
751542-J4	Rack Mounting Kit	For JIS
758917	Test Lead Set	A set of 0.75 m long, red and black test leads
758922 公	Small Alligator-clip	Rated at 300 V CAT II two in a set
758923	Safety Terminal Adapter	Two adapters to a set (spring-hold type)
758924	Conversion Adapter	BNC-banana-Jack (female) adapter
758929 公	Large Alligator-clip	Rated at 1000 V CAT II and used in a pair
758931	Safety Terminal Adapter Set	Two adapters to a set (Screw-fastened type), 1.5 mm hex Wrench is attached.
$761941{ }^{-2}$	WTViewerE	Viewer software for WT series
761951	Safety Terminal Adapter Set	Two adapters to a set for 30 A current (6 mm screw-fastened type)
761952	Safety Terminal Conversion Adapter Set	Two adapters to a set for 5 A current (female-female type)
761953	Safety Terminal Adapter Set	Two adapters to a set for 5 A current (screw-fastened type using B9317WD)
CT60	AC/DC Current Sensor	Maximum 60 Apeak, DC to 800 kHz (-3 dB)
CT200	AC/DC Current Sensor	Maximum 200 Apeak, DC to $500 \mathrm{kHz}(-3 \mathrm{~dB})$
CT1000	AC/DC Current Sensor	Maximum 1000 Apeak, DC to 300 kHz (-3 dB)
CT2000A	AC/DC Current Sensor	Maximum 2000 Arms, DC to 40 kHz (-3 dB)

Parts number	Product	Description	Order Q'ty
B9284LK	External Sensor Cable	Current sensor input connector, Length 0.5 m	1
B9317WD	Wrench	For 761953	1

\triangle Due to the nature of this product, it is possible to touch its metal parts. Therefore, there is a risk of electric shock, so the product must be used with caution.
*1: Use these products with low-voltage circuits (42 V or less).
*2: The WT5000 will be supported soon.

YOKOGAWA

YOKOGAWA TEST \& MEASUREMENT CORPORATION
Global Sales Dept. /Phone: +81-422-52-6237 E-mail: tm@cs.jp.yokogawa.com Facsimile: +81-422-52-6462

YOKOGAWA CORPORATION OF AMERICA

YOKOGAWA EUROPE B.V.
YOKOGAWA SHANGHAI TRADING CO., LTD.
YOKOGAWA ELECTRIC KOREA CO., LTD.
YOKOGAWA ENGINEERING ASIA PTE. LTD.
YOKOGAWA INDIA LTD.
YOKOGAWA ELECTRIC CIS LTD.
YOKOGAWA AMERICA DO SUL LTDA.
YOKOGAWA MIDDIE EAST \& AFRICA BS.C(c)

E-mail: tmi@us.yokogawa.com
Phone: +31-88-4641000 Phone: +86-21-6239-6363 Phone: +82-2-2628-3810 Phone: +65-6241-9933 Phone: +91-80-4158-6396 Phone: +7-495-737-78-68 Phone: +55-11-3513-1300 Phone: +973-17-358100

E-mail: tmi@nl.yokogawa.com
E-mail: tech@ysh.com.cn
E-mail: TMI@kr.yokogawa.com
E-mail: TMI@sg.yokogawa.com
E-mail: tmi@in.yokogawa.com
E-mail: info@ru.yokogawa.com
E-mail: tm@br.yokogawa.com

E-mail: help.ymatmi@bh.yokogawa.com Facsimile: +973-17-336100

Facsimile: +86-21-6880-4987
Facsimile: +82-2-2628-3899
Facsimile: +65-6241-9919
Facsimile: +91-80-2852-1442
Facsimile: +7-495-737-78-69

